Eine Zeitreihe ist eine Folge von Beobachtungen einer periodischen Zufallsvariablen. Beispiele dafür sind die monatliche Nachfrage nach einem Produkt, die jährliche Neueinreichung in einer Abteilung der Universität und die täglichen Flüsse in einem Fluss. Zeitreihen sind wichtig für Operations Research, weil sie oft die Treiber von Entscheidungsmodellen sind. Ein Inventarmodell erfordert Schätzungen zukünftiger Anforderungen, ein Kursterminierungs - und Personalmodell für eine Universitätsabteilung erfordert Schätzungen des zukünftigen Zuflusses von Schülern und ein Modell für die Bereitstellung von Warnungen für die Bevölkerung in einem Flusseinzugsgebiet erfordert Schätzungen der Flussströme für die unmittelbare Zukunft. Die Zeitreihenanalyse liefert Werkzeuge zur Auswahl eines Modells, das die Zeitreihen beschreibt und das Modell zur Prognose zukünftiger Ereignisse verwendet. Das Modellieren der Zeitreihen ist ein statistisches Problem, da beobachtete Daten in Berechnungsverfahren verwendet werden, um die Koeffizienten eines vermeintlichen Modells abzuschätzen. Modelle gehen davon aus, dass Beobachtungen zufällig über einen zugrunde liegenden Mittelwert, der eine Funktion der Zeit ist, variieren. Auf diesen Seiten beschränken wir die Aufmerksamkeit auf die Verwendung von historischen Zeitreihendaten, um ein zeitabhängiges Modell abzuschätzen. Die Methoden eignen sich zur automatischen, kurzfristigen Prognose häufig verwendeter Informationen, bei denen sich die zugrunde liegenden Ursachen der zeitlichen Variation nicht rechtzeitig ändern. In der Praxis werden die von diesen Methoden abgeleiteten Prognosen anschließend von menschlichen Analytikern modifiziert, die Informationen enthalten, die aus den historischen Daten nicht verfügbar sind. Unser Hauptziel in diesem Abschnitt ist es, die Gleichungen für die vier Prognosemethoden zu präsentieren, die im Prognose-Add-In verwendet werden: gleitender Durchschnitt, exponentielle Glättung, Regression und doppelte exponentielle Glättung. Diese werden als Glättungsmethoden bezeichnet. Zu den nicht berücksichtigten Methoden gehören qualitative Prognose, multiple Regression und autoregressive Methoden (ARIMA). Die, die an der umfangreicheren Abdeckung interessiert sind, sollten die Prognoseprinzipien Aufstellungsort besuchen oder ein der ausgezeichneten Bücher auf dem Thema lesen. Wir verwendeten das Buch Prognose. Von Makridakis, Wheelwright und McGee, John Wiley amp Sons, 1983. Um die Excel-Beispiele-Arbeitsmappe zu verwenden, muss das Prognose-Add-In installiert sein. Wählen Sie den Relink-Befehl, um die Links zum Add-In zu erstellen. Diese Seite beschreibt die Modelle für die einfache Prognose und die Notation für die Analyse verwendet. Diese einfachste Prognosemethode ist die gleitende Durchschnittsprognose. Die Methode ist einfach Mittelwerte der letzten m Beobachtungen. Es ist nützlich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Diese Methode berücksichtigt die gesamte Vergangenheit in ihrer Prognose, aber wiegt jüngste Erfahrungen stärker als weniger jüngste. Die Berechnungen sind einfach, da nur die Schätzung der vorherigen Periode und die aktuellen Daten die neue Schätzung bestimmen. Das Verfahren eignet sich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Die Methode des gleitenden Mittels reagiert nicht gut auf eine Zeitreihe, die mit der Zeit zunimmt oder abnimmt. Hierbei handelt es sich um einen linearen Trendbegriff im Modell. Das Regressionsverfahren nähert sich dem Modell an, indem es eine lineare Gleichung aufbaut, die die kleinsten Quadrate an die letzten m Beobachtungen anpasst. Die 7 Fallstricke der gleitenden Mittelwerte Ein gleitender Durchschnitt ist der Durchschnittspreis eines Wertpapiers über einen bestimmten Zeitraum. Analysten verwenden häufig gleitende Durchschnitte als analytisches Werkzeug, um es einfacher zu machen, Markttrends zu verfolgen, während sich die Wertpapiere auf - und abbewegen. Gleitende Mittelwerte können Trends festlegen und Impulse messen. Daher können sie verwendet werden, um anzugeben, wann ein Anleger ein bestimmtes Wertpapier kaufen oder verkaufen sollte. Investoren können auch gleitende Durchschnitte verwenden, um Unterstützungs - oder Widerstandspunkte zu identifizieren, um festzustellen, wann die Preise die Richtung ändern werden. Durch das Studium historischer Handelsbereiche werden Unterstützungs - und Widerstandspunkte etabliert, wo der Preis einer Sicherheit ihren Aufwärts - oder Abwärtstrend in der Vergangenheit umkehrte. Diese Punkte werden dann benutzt, um Entscheidungen zu treffen, zu kaufen oder zu verkaufen. Leider sind bewegte Durchschnitte nicht perfekte Werkzeuge für die Festlegung von Trends und sie präsentieren viele subtile, aber erhebliche Risiken für Investoren. Darüber hinaus gelten die gleitenden Durchschnitte nicht für alle Arten von Unternehmen und Branchen. Einige der wichtigsten Nachteile der gleitenden Mittelwerte sind: 1. Gleitende Mittelwerte ziehen Trends aus vergangenen Informationen. Sie berücksichtigen nicht die Änderungen, die eine zukünftige Performance der Sicherheit beeinflussen können, wie neue Wettbewerber, eine höhere oder niedrigere Nachfrage nach Produkten in der Branche und Veränderungen in der Managementstruktur des Unternehmens. 2. Im Idealfall wird ein gleitender Durchschnitt eine konsistente Änderung des Preises eines Wertpapiers im Laufe der Zeit zeigen. Leider bewegte Durchschnitte nicht für alle Firmen arbeiten, besonders für diejenigen in sehr volatilen Industrien oder diejenigen, die stark durch aktuelle Ereignisse beeinflusst werden. Dies gilt insbesondere für die Ölindustrie und die hochspekulativen Industrien im Allgemeinen. 3. Gleitende Mittelwerte können über einen Zeitraum verteilt werden. Dies kann jedoch problematisch sein, da sich der allgemeine Trend je nach eingestelltem Zeitraum erheblich ändern kann. Kürzere Zeitrahmen haben mehr Volatilität, während längere Zeitrahmen weniger Volatilität aufweisen, aber keine neuen Marktveränderungen berücksichtigen. Investoren müssen vorsichtig sein, welchen Zeitrahmen sie wählen, um sicherzustellen, dass der Trend klar und relevant ist. 4. Eine laufende Debatte ist, ob in den letzten Tagen des Berichtszeitraums mehr Wert gelegt werden sollte oder nicht. Viele glauben, dass die jüngsten Daten besser die Richtung widerspiegeln, in der sich die Sicherheit bewegt, während andere das Gefühl, dass einige Tage mehr Gewicht als andere, falsch verzerrt den Trend. Anleger, die unterschiedliche Methoden zur Berechnung der Durchschnittswerte verwenden, können ganz andere Trends ziehen. (Erfahren Sie mehr in Simple vs Exponential Moving Averages.) 5. Viele Investoren argumentieren, dass die technische Analyse eine sinnlose Art ist, das Marktverhalten vorherzusagen. Sie sagen, der Markt habe kein Gedächtnis und die Vergangenheit ist kein Indikator für die Zukunft. Darüber hinaus gibt es erhebliche Forschung, um dies zu unterstützen. Zum Beispiel führte Roy Nersesian eine Studie mit fünf verschiedenen Strategien mit gleitenden Durchschnitten. Die Erfolgsquote der einzelnen Strategien variierte zwischen 37 und 66. Diese Forschung deutet darauf hin, dass bewegte Durchschnitte nur Ergebnisse Ergebnisse über die Hälfte der Zeit, die mit ihnen einen riskanten Vorschlag für eine wirksame Timing der Börse könnte. 6. Wertpapiere weisen häufig ein zyklisches Verhaltensmuster auf. Dies gilt auch für Versorgungsunternehmen, die im laufenden Jahr eine stabile Nachfrage nach ihrem Produkt aufweisen, aber starke saisonale Veränderungen erfahren. Obwohl gleitende Durchschnitte können dazu beitragen, glätten diese Trends, können sie auch die Tatsache, dass die Sicherheit tendiert in einem oszillierenden Muster zu verbergen. (Weitere Informationen finden Sie unter Halten Sie ein Auge auf Momentum.) 7. Der Zweck jeder Tendenz ist vorherzusagen, wo der Preis eines Wertpapiers in der Zukunft sein wird. Wenn eine Sicherheit ist nicht in beide Richtungen Trend, es bietet keine Möglichkeit, von entweder Kauf oder Leerverkäufe profitieren. Der einzige Weg, einen Investor in der Lage zu profitieren wäre, um eine anspruchsvolle, Optionen-basierte Strategie, die auf den Preis verbleibenden stetig zu implementieren. Die untere Linie Die gleitenden Durchschnitte wurden von vielen als ein wertvolles analytisches Werkzeug angesehen, aber für jedes Werkzeug, das wirksam ist, müssen Sie zuerst seine Funktion verstehen, wann man es benutzt und wann es nicht benutzt wird. Die hier angesprochenen Risiken deuten darauf hin, dass es sich bei den gleitenden Durchschnittswerten nicht um ein wirksames Instrument wie etwa bei der Verwendung mit volatilen Wertpapieren handelte und dass sie bestimmte wichtige statistische Informationen wie zyklische Muster übersehen können. Es ist auch fraglich, wie effektive gleitende Durchschnitte für eine genaue Angabe der Preisentwicklung sind. Angesichts der Nachteile, gleitende Mittelwerte kann ein Werkzeug am besten in Verbindung mit anderen verwendet werden. Am Ende wird die persönliche Erfahrung der ultimative Indikator dafür, wie effektiv sie wirklich für Ihr Portfolio sind. (Für weitere, siehe Do Adaptive Moving Averages führen zu besseren Ergebnissen) Gewichtete gleitende Durchschnitte: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Durchschnitts (MA). Die meisten technischen Analysten glauben, dass Preis-Aktion. Der Eröffnungs - oder Schlussaktienkurs, reicht nicht aus, um davon abhängen zu können, ob Kauf - oder Verkaufssignale der MAs-Crossover-Aktion richtig vorhergesagt werden. Zur Lösung dieses Problems weisen die Analysten den jüngsten Preisdaten nun mehr Gewicht zu, indem sie den exponentiell geglätteten gleitenden Durchschnitt (EMA) verwenden. (Erfahren Sie mehr bei der Exploration der exponentiell gewogenen gleitenden Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tag nehmen und multiplizieren Sie diese Zahl mit 10, der neunte Tag um neun, der achte Tag um acht und so weiter auf die erste der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren dividieren. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieses Kennzeichen wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Themen lesen Sie in Simple Moving Averages machen Trends Stand Out.) Viele Techniker sind fest davon überzeugt, in der exponentiell geglättet gleitenden Durchschnitt (EMA). Dieser Indikator wurde auf so viele verschiedene Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwirrt. Vielleicht die beste Erklärung kommt von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht von der New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt behebt beide Probleme mit dem einfachen gleitenden Durchschnitt verbunden. Erstens weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Doch während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in seiner Berechnung alle Daten in der Lebensdauer des Instruments. Zusätzlich ist der Benutzer in der Lage, die Gewichtung anzupassen, um ein größeres oder geringeres Gewicht zu dem letzten Tagespreis zu ergeben, der zu einem Prozentsatz des vorherigen Tageswertes addiert wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagespreis ein Gewicht von 10 (.10) zugewiesen werden, das zum vorherigen Tagegewicht von 90 (.90) addiert wird. Das ergibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem die letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete gleitende Durchschnittswerte Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im Aug. 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über einen Neun-Tage-Zeitraum, hat endgültige Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterbrach. Der zweite schwarze Pfeil zeigt ein anderes Bein, das die Techniker tatsächlich erwartet hatten. Der Nasdaq konnte nicht genug Volumen und Interesse von den Kleinanlegern erzeugen, um die 3.000 Marke zu brechen. Danach tauchte es wieder zu Boden, um 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index bei 1.961,46, und Techniker begannen zu sehen, institutionelle Fondsmanager ab, um einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen abholen. (Lesen Sie unsere verwandten Artikel: Moving Average Umschläge: Raffinieren ein beliebtes Trading-Tool und Moving Average Bounce.)
No comments:
Post a Comment