Friday, February 17, 2017

Moving Average Prognose Sas

Verschieben von durchschnittlichen und exponentiellen Glättungsmodellen Als ein erster Schritt zum Überfahren von Mittelwertsmodellen, Zufallswegmodellen und linearen Trendmodellen können nicht-saisonale Muster und Trends mittels eines gleitenden Durchschnitts - oder Glättungsmodells extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird auf den Zeitraum t (m1) 2 zentriert, was impliziert, daß die Schätzung des lokalen Mittels dazu tendiert, hinter dem wahr zu bleiben Wert des lokalen Mittels um etwa (m1) 2 Perioden. Somit ist das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu der Periode, für die die Prognose berechnet wird, angegeben: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten der Daten zu liegen . Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Weg Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Wandermodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt sie einen Großteil der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Rückgang in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst um einige Zeit später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-Term einfach gleitenden Durchschnitt versuchen, erhalten wir sogar noch bessere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Serie L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell entspricht einem zufälligen Weg-Modell (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang.) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1 945, bezogen auf den Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 10.2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Reihe etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, so würde dies die Prognose für Y in der Periode t1 sein.) Dann sei Squot die doppelt geglättete Folge, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die es anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. Analog zur Vorstellung des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Reihe verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1 946, wenn auch nicht exakt gleich . In diesem Fall erweist sich dies als 10.006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist Mittelung über eine ziemlich große Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Anfang der Seite.) Eingereicht von Tricia Aanderud am 2012-04-06 8211 10.05 Zu Ehren von Ostern, here8217s ein seltenes Ei für die BI-Notes-Blog Informationen über SAS statistische Produkte Heute Gast-Blogger Phil Low bietet einen Einblick Über einige der anderen SAS-Verfahren, insbesondere jene, die für die Prognose verwendet werden. Würden Sie manuell Prognose 60.000 Daten Items Ever wake up zu finden, müssen Sie Prognosen für 60.000 verschiedene Elemente produzieren Als Datenanalytiker für eine medizinische Versorgung Distributor habe ich. Manuelle Prognosen unter diesen Bedingungen sind weder machbar noch rentabel. Geben Sie die Prozeduren FORECAST und ESM ein. Diese beiden Verfahren kombiniert können mehr als 10 verschiedene Prognosemodelle zur Auswahl und können leicht miteinander verglichen werden mit der Güte der fit stats. Das FORECAST-Verfahren wurde in den 1980er Jahren geschrieben und ist eine einfache Auto-Regression mit oder ohne Trend. Die schrittweise Auswahl wird verwendet, um zu bestimmen, welche autoregressiven Verzögerungen es zum endgültigen Modell machen. Weil es so alt ist, sind einige der erweiterten Funktionen besser vertreten durch ESM oder AUTOREG. Das ESM-Verfahren ist ein gleitendes Durchschnittsmodell. Was über ESM großartig ist, ist seine Fähigkeit, deterministischen Trend und Saisonalität in den Mix zu werfen. Sie können fast jeden Aspekt des Modells anpassen und jede mögliche Statistik wird ausgedruckt. Fancy Forecasting Wenn Sie wirklich wollen, bekommen Phantasie, können Sie in einigen niedrigeren Arma-Modelle zu werfen. Seien Sie jedoch vorsichtig mit der Güte der Anpassungsstatistiken, manche werden im ARIMA-Verfahren anders berechnet als bei FORECAST oder ESM. Um die richtige Güte der Anpassungsstatistik zu erhalten, müssen Sie die Formeln manuell berechnen. SAS-Technologie-Support hat vor-geschriebenen Code zur Verfügung. Sobald Sie die Modelle laufen, wählen Sie einfach eine Güte der Anpassungsstatistik, um sich darauf zu verlassen, sei es RMSE, MAPE, AIC, SBC, etc, und laufen mit dem Champion. Diese Methode ist nicht perfekt, aber ich fand es unglaublich nützlich bei der Herstellung von menschenwürdigen Prognosen für eine unendliche Anzahl von Elementen in wenigen Minuten. Für hochwertige Artikel mit langer Geschichte gehe ich oft vor und baue ein Modell mit den AUTOREG - oder ARIMA-Prozeduren, die als manuelles Modell oft viel enger zusammenpassen können. Diese Kombination von manueller Prognose für wichtige Posten und automatische Prognose der verbleibenden Posten ergibt recht zufriedenstellende Ergebnisse. Mehr über Phil Low Phil Low ist ein Datenanalytiker bei MDR specialty distribution corporation. Als einziges Mitglied der Abteilung für Datenanalyse arbeitet Phil sehr hart daran, Code zu schreiben, damit er so hart arbeiten muss. Sie können eine Verbindung zu Phil über LinkedIn herstellen. Verpassen Sie nie einen BI-Notizen-Post Klicken Sie hier für kostenloses Abonnement. Sobald Sie abonnieren, werden Sie aufgefordert, Ihr Abonnement über Ihr E-Mail-Konto zu bestätigen. Ihre E-Mail-Adresse wird privat gehalten und Sie können sich jederzeit abmelden. Als Teil meiner Prognose verwende ich einen gleitenden Durchschnitt, der auf drei Beobachtungen basiert. Berechnen dieses in SAS Ich habe es nur für Ergebnis-Daten verwaltet und nicht geschafft, es für Prognosedaten tun. Der gleitende Durchschnitt für einen bestimmten Monat sollte der Durchschnitt für die gleichen Monate drei Jahre zurück sein. Ich habe verschiedene Art der Syntax versucht, aber ich habe nichts gefunden, das eine korrekte Berechnung für Werte nach Mai 2014 (mein letztes Ergebnis) macht. Diese Syntax erstellt korrekte Werte bis Mai 2014. Danach ist alles leer (Ich habe MA nach, dass in mehrfacher Hinsicht erstellt, aber nie richtig). Proc erweitern dataQQQ outQQQQ transformout (umgekehrte movave 3 reverse) Irgendwelche Ideenfunktionen Ich denke, es sollte von diesem Setup zu arbeiten. Proc Erweiterung wird eher verwendet, um Daten zu transformieren, als sie für die Prognose zu verwenden. Wenn youre tatsächlich auf der Suche nach einfachen gleitenden Durchschnitten (nicht exponentiell gewichtet) können Sie einen Datenschritt verwenden. Vielleicht so etwas wie: Daten AForecast (Dropdummy) beibehalten Dummy-Set A dummySum (Dummy, IST, - Lag3 (IST)) MovAve3GDdummy3 Run P. S. Kredit geht an SAS :-) Ich habe diese Art von Lösung gesehen. Das Problem ist jedoch, dass meine MA ist nicht so einfach wie diese (sie sind immer noch einfach, aber nicht genug ..). Für Juni 2014 möchte ich den Durchschnitt von Juni 2011-2013. Und so weiter, so möchte ich nicht nur den Durchschnitt der drei letzten Monate. Wie kann ich eine by-Anweisung und eine ID-Variable in Ihre Lösung einfügen? Geben Sie uns ein Beispiel, um Ihr Problem zu veranschaulichen. Ich könnte ganz falsch sein, aber ich denke: Lassen Sie Periods3 Lassen Lead5 Lassen Multiplier12 12 Monate Daten A (Dropi j k) Format Datum Datum9. Haben k1 bis 3 Do j1 bis 5 Do i1 bis 12 DateMDY (i, 1, J2000) ACTUALRound (Normal (1) k20) k als Standardabweichung IDk Output End End End Run einfach saisonal () gleitenden Durchschnitt Daten AForecast (KeepID Datum AKTUELL MovAve) Set A von ID-Array-Attrappe dummy1-dummy12 Array dummysum dummysum1-dummysum12 Array dummydrop dummydrop1-dummydrop12 dummysum1-dummysum12 RETAIN 12 i1 Do Wenn Monat (Datum) eq i Dann LagampCombLag dummy ACTUAL dummydrop Do. (IST) Ende End If Erste. ID Dann Do count0 Do i1 bis 12 dummysum 0 End End count1 Wenn count gt ampCombLag. Dann Sie i1 tun, um 12 dummysum Sum (dummysum, blind, - dummydrop) End End Else Do Do i1 bis 12 dummysum Sum (dummysum, Dummy) Ende End If ge ampCombLag zählen. Dann Do Do i1 bis 12 Wenn nicht fehlt (Dummy) Dann dummysumactdummysum Ende MovAvedummysumactampPeriods. Führen Sie die Füllung in Lead Data aus. AForecastLead (Dropi) Beibehalten Datum ID MveAve Set AForecast By ID Wenn Last. ID Then Do Output Do i1 to ampLead. DateIntNX (Monat, Datum, 1, gleich) ACTUAL. Output Ende End Output Run Vielen Dank udosas. Ich konnte nicht wirklich damit beginnen, nach der Rückkehr aus meinem Urlaub, aber jetzt kann ich einige Zeit finden und ich habe bereits einige Verwendung Ihrer Antwort gefunden. Aber Im nicht dort noch. Ich glaube, ich brauche nicht Ihre Art von Daten Schritt, weil ich bereits ein Datum Variable manad (YYMMN6. 200801-201812) und natürlich meine Variable von Interesse SGIRODFPANDEL (mit Werten von 200801 bis 201405). Wenn mein proc Timedata Schritt Schreiben Im wie dies zu tun: proc Timedata datahave outnull outarraywant id månad intervalMONTH tun 1 bis LÄNGE movavg (SGIRODFPANDELt-12SGIRODFPANDELt-24SG IRODFPANDELt-36) 3 Dann habe ich movavg Werte von 201101 bis 201505. aber mein Ziel ist es, Werte von 201406 bis 201812. Daher möchte ich gleitende Mittelwerte, die von einer Mischung von SGIRODFPANDEL-Werten und movavg-Werte abhängen, und einige, die nur von movavg-Werten abhängt. Ist das möglich Wenn ich LÄNGE für etwas anderes ersetzen, funktioniert es einfach nicht. Was Im tun falsch


No comments:

Post a Comment